Serveur d'exploration sur Aussois

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal Microscopy with Photomultipliers and UV to IR Cameras

Identifieur interne : 000057 ( Main/Exploration ); précédent : 000056; suivant : 000058

Thermal Microscopy with Photomultipliers and UV to IR Cameras

Auteurs : Bernard Cretin [France] ; Benjamin Rémy [France]

Source :

RBID : ISTEX:DEEB955F8627D0CB6500DABC23F73288598895C0

Abstract

Abstract: As techniques have evolved, there has been an increasing need for better tools for process control and product testing. In the area of thermal measurements, as in other fields such as microscopy, telemetry, and so on, optical methods have often provided measurement solutions, by their non-invasive nature. Indeed, the heat sink phenomenon [1], which occurs whenever a material sensor is placed close to the object whose temperature is to be measured, as happens with near-field techniques (SThM methods [2] or thermal AFM where the tip is either in direct contact or very close to the surface), does not arise in optics, where the measurement can be considered non-perturbing. Various optical methods have been tested for temperature measurements: radiometry, historically the first [3, 4], thermoreflectance [5, 6] described in Chap. 13, and fluorescence [7–9]. Recently, near-field or SNOM techniques have been able to obtain excellent spatial resolution [10–12]. The main advantage with the latter techniques lies in their high spatial resolution. In contrast to far-field radiometric methods, this resolution is no longer limited by diffraction (Rayleigh criterion, where the ultimate spatial resolution is of the order of half the wavelength Dx ¼ l =2). However, it also depends sensitively on the geometry of the probe and the probe–sample distance, and it is therefore difficult to control, all the more so as the processes used to make probes remain poorly reproducible today. Furthermore, owing to the close proximity of the probe and surface, it necessarily perturbs the temperature of the surface, even if there is no real physical ‘contact’ between probe and surface. This proximity forbids any high temperature measurement, which would damage or destroy the probe [13]. Finally, it is not easy to interpret and analyse the measured signal, which contains not only thermal but also topological information.

Url:
DOI: 10.1007/978-3-642-04258-4_14


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermal Microscopy with Photomultipliers and UV to IR Cameras</title>
<author>
<name sortKey="Cretin, Bernard" sort="Cretin, Bernard" uniqKey="Cretin B" first="Bernard" last="Cretin">Bernard Cretin</name>
</author>
<author>
<name sortKey="Remy, Benjamin" sort="Remy, Benjamin" uniqKey="Remy B" first="Benjamin" last="Rémy">Benjamin Rémy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DEEB955F8627D0CB6500DABC23F73288598895C0</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1007/978-3-642-04258-4_14</idno>
<idno type="url">https://api.istex.fr/document/DEEB955F8627D0CB6500DABC23F73288598895C0/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="ISTEX">000F73</idno>
<idno type="wicri:Area/Main/Curation">000F73</idno>
<idno type="wicri:Area/Main/Exploration">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Thermal Microscopy with Photomultipliers and UV to IR Cameras</title>
<author>
<name sortKey="Cretin, Bernard" sort="Cretin, Bernard" uniqKey="Cretin B" first="Bernard" last="Cretin">Bernard Cretin</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>FEMTO-ST, C.N.R.S, U.M.R 6174, 32 Avenue de l’Observatoire, 25044, Besançon Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Remy, Benjamin" sort="Remy, Benjamin" uniqKey="Remy B" first="Benjamin" last="Rémy">Benjamin Rémy</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>2 LEMTA ENSEM, UMR 7563, 2 avenue de la forêt de Haye, B.P 160, 54504, Vandoeuvre-Lès-Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandoeuvre-Lès-Nancy</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s">Topics in Applied Physics</title>
<imprint>
<date>2009</date>
</imprint>
<idno type="ISSN">0303-4216</idno>
<idno type="ISSN">0303-4216</idno>
</series>
<idno type="istex">DEEB955F8627D0CB6500DABC23F73288598895C0</idno>
<idno type="DOI">10.1007/978-3-642-04258-4_14</idno>
<idno type="ChapterID">14</idno>
<idno type="ChapterID">b978-3-642-04258-4_14</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0303-4216</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: As techniques have evolved, there has been an increasing need for better tools for process control and product testing. In the area of thermal measurements, as in other fields such as microscopy, telemetry, and so on, optical methods have often provided measurement solutions, by their non-invasive nature. Indeed, the heat sink phenomenon [1], which occurs whenever a material sensor is placed close to the object whose temperature is to be measured, as happens with near-field techniques (SThM methods [2] or thermal AFM where the tip is either in direct contact or very close to the surface), does not arise in optics, where the measurement can be considered non-perturbing. Various optical methods have been tested for temperature measurements: radiometry, historically the first [3, 4], thermoreflectance [5, 6] described in Chap. 13, and fluorescence [7–9]. Recently, near-field or SNOM techniques have been able to obtain excellent spatial resolution [10–12]. The main advantage with the latter techniques lies in their high spatial resolution. In contrast to far-field radiometric methods, this resolution is no longer limited by diffraction (Rayleigh criterion, where the ultimate spatial resolution is of the order of half the wavelength Dx ¼ l =2). However, it also depends sensitively on the geometry of the probe and the probe–sample distance, and it is therefore difficult to control, all the more so as the processes used to make probes remain poorly reproducible today. Furthermore, owing to the close proximity of the probe and surface, it necessarily perturbs the temperature of the surface, even if there is no real physical ‘contact’ between probe and surface. This proximity forbids any high temperature measurement, which would damage or destroy the probe [13]. Finally, it is not easy to interpret and analyse the measured signal, which contains not only thermal but also topological information.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Bourgogne-Franche-Comté</li>
<li>Franche-Comté</li>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Besançon</li>
<li>Vandoeuvre-Lès-Nancy</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Cretin, Bernard" sort="Cretin, Bernard" uniqKey="Cretin B" first="Bernard" last="Cretin">Bernard Cretin</name>
</region>
<name sortKey="Cretin, Bernard" sort="Cretin, Bernard" uniqKey="Cretin B" first="Bernard" last="Cretin">Bernard Cretin</name>
<name sortKey="Remy, Benjamin" sort="Remy, Benjamin" uniqKey="Remy B" first="Benjamin" last="Rémy">Benjamin Rémy</name>
<name sortKey="Remy, Benjamin" sort="Remy, Benjamin" uniqKey="Remy B" first="Benjamin" last="Rémy">Benjamin Rémy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/AussoisV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    AussoisV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DEEB955F8627D0CB6500DABC23F73288598895C0
   |texte=   Thermal Microscopy with Photomultipliers and UV to IR Cameras
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Sun Apr 16 19:50:37 2017. Site generation: Mon Feb 12 14:44:36 2024